近年来,牙本质粘结系统和树脂基充填材料成牙科材料研究的热点全世界每年有关牙科材料的研究论文达600-700篇,其中有关粘结剂的论文占42%,树脂基修复材料的论文占38%。些论文都侧重于产品性能测试,而对其结构和性能关系的研究较少。最近年内,人们开始对银汞合金替代品进行认真讨论对牙本质粘结系统的成分和毒性进行深入细致的研究,临床研究所提供的信息也越来越多,本文对几常用牙科材料的研究动态介绍如下。
1 银汞合金(dental amalgam)
银汞合金具有耐用、操作简单等优点,但它对口腔环境的潜在污染也日益受到重视和研究。Mahler和Bryant[1]测试33种不同比例的银汞合金的性能。发现在研磨其间,向银汞合金内添加1%的汞,可大大减少高铜银汞合金的微漏,关增加其固位性能。研究表明,汞释放可由咀嚼食物或香糖而加重。Sallasten等[2]对长期咀嚼口香糖与汞释放的关系进行了探讨,测定18例长期、大量咀嚼口香糖者与19例对照者血清与尿中的汞浓度,发现两者具有显著性差别(P<0.05)。银汞合金除释放少量汞之外,在某些病人,口腔软组织与银汞合金充填体长期接触可产生苔藓样反应。这类患者改用其它充填材料后,95%明显改善。改用金冠者,病变得以治愈 。
由于对银汞合金污染的担心,当今越来越多的牙科医生喜欢用其替代品充填后牙。对美国牙齿美容学会会员所做的一项的调查显示,在修复后牙牙冠缺损时,27%的医生选用银汞合金,18%选择金嵌体,38%应用复合树脂,17%采用其它材料。虽然复合树脂可以作为银汞合金的替代口,但镓合金有取而代之之势。目在美国市面上有两种镓合金出售,其调制方法类似于银汞合金,但非常粘稠,难以调拌。在研磨期间或使用前添加少量乙醇,可解决这一问题。镓合金合成包括镓、铟、锡,室温下呈液状,并具易熔特性。Osborne和Summitt[3]在二年间应用镓合金充填9例病人的30Ⅰ类缺损,充填前隔湿,防止唾液污染。2年后,29个充填体保持完整,患者无过敏症状。但24%的充填体颜色暗,并有腐蚀;60%表面变粗糙,其原因不清。Navarro等[4]在类似研究中,对30个GF和31个Caulk充填体进行比较,充填时未做暂时隔湿封闭。结果8个月后,所有镓合金充填体均变灰暗,67%的患者出现过敏症状。Caulk充填体中,29%出现过敏症状。作者认为镓合金不适于临床应用。Kaga等应用GF充填60例儿童Ⅰ类和Ⅴ类窝洞,发现1年后充填体严重腐蚀,且腐蚀产物大量积聚,未见充填体过度膨胀。作者认为,镓合金易腐蚀,不适于永久充填,但可作为乳牙的充填材料。
虽然镓合金已在临床上应用,但对其超微结构却了解甚少。Hero等[5]按65%镩、19%铟和15%锡进行混合,得出以下反应产物:Ag2Ga,CuPdGa2,β-Sn,Ag-Sn和未起反应的合金,最终产物为一复杂的混合物。Gunnsees等[6]重复以上实验,得到Cu-Ca,Ag-In.Ag-Ga等反应物。对于镓合金的化学反应产物,反应相稳定性及各反应相的抗腐蚀力,有待进一步的研究。
2 复合树脂(composites)
复合树脂研究的侧重点在于增加树脂的抗磨损力,并提出几种磨损测试方法。Winkler等[7]应用一种简单测貌仪,测定充填体边缘的高度变化,认为这种方法的可重复性好,优于其它评价方法,尤其直接评价法。但由于复合树脂的磨损机制、类型在个体间不尽相同。因而这些评价方法的可靠性均有限。复合树脂的另一缺点是易疲劳,可通过球磨测定其疲劳寿命。对于非接触型复合树脂的磨损,目前至少有四种理论。这些理论认为,增加复合树脂单位体积内填充料的含量,单位体积的重量即密度增加,其机械强度和硬度即耐磨性增强。增加填料颗粒的大小,可减少充填体暴露面的抗磨性能。但由于玻璃粉、陶瓷粉的热膨胀性能,尤其是颗粒细小且密集时,增加单位体积复合树脂内填充料的含量及密集性,复合树脂的膨胀性增加。Venhoven等对几种实验用复合树脂的成分进行检测,包括填料负荷和颗粒大小,发现如填料排列足够紧密,可保护树脂免遭食物纤维的磨损。
磨损可发生于复合树脂充填体的各个部位,但不同部位的磨损率无显著差别。除填料颗粒与强度有关外,增大填料可减小其热膨胀系,两者呈反比关系。填料颗粒最大,膨胀系数最小的材料为Z100,22.5mg/kg℃,牙齿的反应热膨胀系数为9-11 mg/kg℃,银汞合金为25 mg/kg℃。
当与唾液中的水分和其它成分接触后,复合树脂的某些成分会发生溶解和释放。研究表明,复合树脂的离子释放程度在人工唾液中大大高于在蒸馏水中,为了增加复合树脂的疏水树脂进行积极研究。Li和Craig报道研制成功氟化Bis-GMA,但尚未用于临床。
临床应用复合树脂时,主要考虑其粘结性能,有无残余应力,聚合性能,有无空隙或边缘缺损,治疗后是否产生过敏症状。Versluis等应用有限元法对逐层充填与整体充填技术进行了比较,发现逐层填充可产生大的界面应力。整体充填所产生的应力较小,作者建议如树脂厚度能够达到完全光固化,最好采用整体充填技术。逐层充填的另一缺点是每层树脂间的粘合力不足,树脂与粘结剂共用且形成混合层时,可使微漏减少到最低限度。
树脂与窝洞间的边缘密合对其固位至关重要,树脂越厚,越易产生空隙,边缘密合越差。Kula等[10]比较不同制剂对树脂性能的影响,将树脂浸于1.23%APF泡沫,1.23%APF凝胶,2%氟化钠及水中4min和1min发现树脂与APF基材料接触4min后,填料性能与填料界面均受到影响。
3 粘附剂与粘结剂(adhesion and bonding)
近年来,新的牙本质粘结系统不断出现,大多数新型粘结系统的成分种类均减少,或为调理剂与预处理剂相结合。或是预处理剂与粘结剂相结合。目前的研究正致力于简化粘合过程,并探讨产品形成的混合区性质及检查方法等。Finger和Fritz对几种预处理剂与粘结剂结合系统进行检测,发现它们与牙釉质有着良好的粘结力,但与牙本质的粘结强度不尽相同,所有材料均有某种混合层形成。一般认为混合层对牙本质的粘结是必需的,但其厚度是否影响最终的粘结强度尚不清楚。
各种粘结系统的预处理剂均能渗透至牙本质表面,但所形成的混合层形态各具特征。混合层的形态及位置对粘结性能的影响如何,尚不明了。混合层的形成依赖于预处理剂对牙本质的湿润,调理剂的搅拌也会影响粘结性能,用磷酸酸蚀时,湿润牙本质比干燥牙本质的酸蚀效果好。某些窝洞消毒剂也影响粘结剂的粘合力,洗必太则无此作用。
Watanabe等[12]测定不同的剪切方向的牙本质基质强度,发现切牙与尖牙区的最大的剪切强度不同,以54-92mpa不等,主要取决于牙本质小管的方向。牙本质的湿润程度与粘结强度、微漏、过敏症状均有关系,对于无水、丙酮基系统,应用时需保持牙本质湿润,但无需过度湿润。粘结层本身较脆弱,用于临床时,应采用弹性粘结系统设计,以吸收能量。
牙本质粘结系统已在临床上广泛应用,Alhadainy和Abdalla[13]报道,3M和clear fill Line Bond 在3年后的保持率达100%,而Syntac primer为90%, Gluma2000溶液(2)仅为85%。能够形成混合层系统,性能最好。随着粘结系统的普遍应用,对预处理剂和粘结材料中单体过敏的报道也有增多。3M caulk和C+B Metabond均有较强的诱变力,0.2%HEMA和0.5%甲基丙烯酸甲酯甘油均能使豚鼠致敏。
4 裂隙封闭剂(pit and fissure sealants)
几乎所有封闭剂都是无填料树脂。过去几年内,玻璃离子粘固粉曾被用作封闭剂,但因固位不佳,质地脆弱,成功率有限。Winker等[14]比较树脂改性玻璃离子水门汀与树脂的固位情况,发现1年后两者的脱落率相当,但树脂的总保持率较高。Smales等[15]的研究结果与之相似,治疗后6月,树脂改性玻璃离子水门汀的脱落率达94%,而且放置时操作困难,树脂封闭剂的脱落率为11%。
近年来应用激光蚀刻和固化的报道增多,Walsh等[15]对激光蚀刻与酸蚀的效果进行评价,应用5W、20Hz、20ns脉冲和0.8mm光斑大小的CO2激光进行牙面蚀刻,获得与酸蚀同样的效果。放置封闭剂后,一年保持率均在90%以上(激光蚀刻牙面为98%,酸蚀牙面为95%)。
5 水门汀(cements)
由于新的粘结材料和技术的出现,对传统水门汀的研究趋于减少,但现行的大量修复体仍沿用传统水门汀进行固位,Margerit等[17]对封闭用磷酸锌水门汀的成分进行测试,样本取自27例修复体拆除后的病人牙面,采用X线衍射技术进行分析。结果在水门汀中测出的成分有ZnO,非晶形磷酸锌,水和四氢磷酸锌晶体。磷酸锌晶体见于92%的样本中,但在刚调制的水门汀中没有。作者认为,用过的水门汀不同于新调制的粘固剂,但其终末相产物的远期稳定性十分优良。
6 玻璃离子水门汀(glass ionomers)
过去几年内,人们对各种玻璃离子粘固粉中氟释放的相对作用进行了大量的研究,认为氟释放对于减少龋患可能没有作用或作用极小。De moor等[18]对几种玻璃离子水门汀的氟释放进行研究,发现随着时间延长,氟释放减少。治疗后1-2d氟释放最多,其后28d渐少,远期氟释放浓度甚低。Peters等[19]以Dyract 治疗55例Ⅰ、Ⅱ类乳牙,随访一年,应用M-L磨损计分法评价磨损程度发现充填体面平均有 190μm的磨损。 Matis等的研究表明,玻璃离子水门汀适用于需窝洞制备的牙体充填。
树脂改性玻璃离子水门汀的反应和结构尚未完全阐明,充填材料或牙体基质中含有足够的水分是保证酸基反应发生的关键。应用玻璃离子水门汀修复牙体缺损失败的主要原因是继发龋形成。将近50%的充填体因继发龋而被更换,这对氟释放的价值提出了疑问。
(本文经阎俏梅医生审阅,特致谢意!)
参考文献
Mahler DB ,Bryant RW .Microleadage of amalgam alloys an update .J Am Dent Assoc,1996,127:1351-6
Sallsten G ,Thoren J ,Barreagard L ,et al.Long-term use of nicotine chewing gum and mercury exposure from dental amalgam fillings,J Dent Res ,1996,75:594-8
Osborne JW ,Summitt ,J B ,2-year clinical evaluation of a gallium restorative alloy ,Am Dent ,1996,9:191-4
Navarro MFL .Franco EB ,Bastos PAM ,et al.Clinical evaluation of gallium alloy as a posterior restorative material .Quintessence int ,1996,7:315-20
Hero H,Simensen CJ ,Jorgensen RB .Structure of dental gallium all oys .Biomaterials ,1996,17:321-6
Gunnses AE ,Olsen A ,Hero H ,Transimssion electron microscopy study of a dental gallium alloy ,J Mat Sic Mat Med ,1996,7:447-56
Winkler MM,Lantenschlager EP ,Boghosian A ,et al .As accurate and simple method for the measurement of dental composite wear ,J Oral pehabil ,1996,23:486-93
Versluis BAM ,de Gee AJ ,Werner A ,et al.Influence of filler parameters on the mechanical coherence of dental restorative resin composites Boimaterials ,1996,17:735-40
Versluis A ,Douglas WH ,Cross M et al ,Does an incremwntal filling trchnique reduce polymerization shrinkae stresses ? J Dent Res,1996,75:871-8
Kula K ,Webb EL ,Kula TJ ,Effect of 1-and4-minute treatment of topical fluorides on a composite resin .Pediatr Dent ,1996,18:24-8
Finger WJ ,Fritz U .Laboratory evaluation of one component enamel /den tin bonding agents .Am J Dent ,1996,9:209-10
Watanabe LG ,Marshall GW Jr ,Marshall SJ,Dentin shear strength effects of tubule orientation and intratooth location .Dint Mater,1996,12:109-15
Alhadainy HA ,Abdalla AL ,2-year clinical evaluation of toothcolored materials in cervical lesions ,Am J Dent ,1996,9:15-8
Winkler MM ,Deschepper EJ ,Dean JA ,et al.Using a resinmodified glass ionomer as an occlisal sealant a one yeat clinical study ,J am Dent Assoc ,1996,127:1508-14
Smales RJ ,Lee YK ,Lo FW ,et al .Handling and clinical performance of a glass ionomer sealants .Am J Dent ,1996,9:203-5
Walsh LJ ,Split mouth study of sealant retention with Co2 laser versus acid etch conditioning .Aust Dent J ,1996,41:124-7
Walsh J ,Cluzel B,Leloup JM ,et al .Chemical characterization of in vivo aged zinc phosphate dental cements ,J Mat Sic Mat Med,1996,7:326-8
De Moor RJG ,Verbeeck RMH ,De Maeyer EAP,Fluoride release profiles of restorative glass ionomer formulations .Dent Mater,1996,2:88-95
Peters TCRB ,Roeters ,JJM ,Frankenmolen FWA,Clinical evaluation of Dyract in primary molars :1-year results ,Am J Dent ,1996-9:83-7