口腔器械资讯中心 Topics
含氟玻璃离子水门汀的研究进展
作者:厚继续 综述 张彩霞 审校 日期:2007年01月30日 来源:不详 浏览:

核心提示:

  玻璃离子水门汀(Glass Ionomer Cement 简称GIC)于1972年Willson发明以来,由于该材料对牙齿有较好的化学粘结作用,且对牙髓刺激性小等诸多优点,已被口腔科临床广泛用于充填、粘结、洞基衬,牙本质过敏的治疗及窝沟封闭等。其最主要的特点是生产过程中作为基质添加着大量的氟化物,氟化物能够长期释放氟离子,提高牙齿的抗酸性,改变充填体周围牙菌斑的性状,抑制龋病的发生,发展,以防治龋病方面有极其重要的作用,本文就近十年来含氟GIC的研究进展予以综述。

   一、GIC粉末氟水平

  GIC粉末是由主要成分SiO2、Al2O3与CaF2、Na3AlF3、NaF、ALPO4等混合加热至1000-1500摄氏度融化,急剧冷却并研磨成细粉而制成的[1]。其中氟化物在生产工艺过程中起熔融作用。GIC粉末中含有氟是其固化体释放氟的基础,研究GIC


粉末中氟水平对于阐明GIC释放氟机理有极其重要的意义,由于GIC粉末中除氟化物外,还含有大量的钙、铝等金属离子,这些离子对氟离子选择电极有极强的干涉的作用。不能简单地应用氟电极直接测定,理论上应和微量扩散方法使GIC中氟与其分离后才能够使用氟离子电极直接测定。佐久间惠子等应用微量扩散方法对牙科水门汀氟水平进行测定,发现GIC粉末中含氟量在6.1-12.5%[2]。但是GIC粉末中氟与钙、铝结合形成较为复杂和紧密,影响微量扩散方法氟释放液HCLO4以氟释放,其次GIC粉末中含氟量较高,对于为测定食品中微量氟而开发的微量扩散方法,有影响微量扩散方法对氟回收率的可能性,所以不得不减少测定粉末量到1mg,秤取粉末量过少,也影响秤取的精度。因此准确定量GIC粉末中氟的分析尚需进一步研究。

   二、氟化物在GIC固化反应中的作用

  生产过程中加入氟化物能够改善GIC临床操作性能,其加入氟化物量会对临床操作性能带来很大的影响。氟化物的存在、特别是F离子与被溶出的金属离子形成化合物,如CaF+、ALF+2、ALF++,阻碍了金属离子与聚丙烯酸的络合,延迟反应过程。因此氟化物能够延迟胶化过程,延长固化时间,形成的络合物有促进离子的释放作用,使GIC调和物PH降低,也能够延迟PH依赖的胶化反应,另外氟化物在GIC粉末中含量与其固化体透明性相关联,降低氟化物含量使固化时间缩短,但能提高GIC固化体的透明体[1]。

  三、GIC释放氟机理

  粉末中硅酸铝氟玻璃被调和液聚丙烯酸中H离子作用,使其表面溶解,粉末中钙、铝、钠离子等溶出,游离出氟,伴随着固化反应,玻璃离子粉末中钙、铝等阳离子与聚丙烯酸中羧基发生络合反应,形成络合物,氟存在于基质中的氟,初期氟释放仅局限于表层,然后是固化体内部氟扩散释放,长期氟释放的机理尚不完全清楚[4]。由于固化反应是一种亲水胶化反应,GIC固化体吸收水或唾液,也使氟处于容易释放的状态[5]。

  Kuhu待认为GIC氟释放机理为:①表面溶解;②水门汀自体崩解;③从水门汀内部扩散。典型的公式为Y=const+at1/2+bt,Y为累积氟溶出量,t是浸入时间,comst是表面溶解量,是与时间无关的固化表面物质溶出系数;at1/2是扩散量;a是扩散系数; bt是表示GIC自体溶解量,随时间GIC固化体表面崩解, b是其崩解系数[3]。

  (一)氟化物添加方法:

  (1)氟化物与水门汀混合型

  (2)包绕型或难溶解氟化物混合型

  (3)单体与氟离子或氟化物结合型

  其中(1)与(2)固化后初期释放氟量相当大,以后也能持续释放氟但量减小;(3)也有上述倾向,但能够长期稳定释放氟[5]。

  (二)GIC固化体释放氟的类型:

  GIC固化体释放氟量经时变化,调和开始24小时释放氟速度最大,2-3天急剧减低,5-7天后减少至第1天10%左右,1-2周后释放量渐渐减低。其后氟释放量的减少倾向,仍能够长期持续释放[6-8]。Swarts报道GIC固化体经过1年后,Tay报道GIC固化体经过2年半后仍能够释放氟[9]。

  (三)GIC粉末中氟与固化体释放氟量的相关性

  GIC固化后24小时内氟释放量不同产品间有较大的差别,4周后差别变小;不同产品的长期氟释放量没有很大的区别[10-12]。粉末中主要成分SiO2、Al2O3,与氟化物熔剂一同熔融,熔融温度的差别使一部分氟化物没有被溶解,有时被玻璃包绕着,使产品之间粉末中氟结合状态不同,这些因素均影响着氟的释放。藤林等报道GIC粉末中氟含量和其固化体释放氟量没有关系,但山贸等报道在GIC粉末中添加含氟的HY制剂,随配合比例加大,其固化体释放氟量也增加。ASPA与富士TypeI、TypeⅡ相比粉末中含氟量较高,但与富士TypeⅠ、TypeⅡ相比氟释放量没有显著差异,提示其基质中可能是含氟量相同的。ASPA粉末中部分氟是很难溶的CaF2或者是被其质玻璃封闭着的,这是与调和液反应粉末氟量少的原因。由此推测粉末中含氟量尽管相同,但结合状态不同时,也会产生氟释放量的差异。比较其累积氟释放量,尽管初期氟释放量是相同的但是经时氟释放量有差异,可能是各材料固化体内部氟向表面扩散率不同。由于粉与液反应必不同引起粉末中氟游离子到基质量不同,所以粉末粒度及粉液比例影响其固化体氟的释放。

  (四)溶出介质的GIC固化体释放氟量的影响

  有关GIC固化体释放氟的研究大多是在蒸馏水中测定的,其优点是测定简单,蒸馏水中没有其它的离子的影响,但是蒸馏水不同于口腔环境,临床应用是暴露于人口腔内,口腔内唾液的成分,分泌量、PH、离子强度,食物及口腔细菌等因素对其都有影响,由此众多学者展开对GIC固化体的蒸馏水和人工唾液中释放氟的比较研究[13,14]。川岛正等应用蒸馏水和PH为7及PH为4的含有Ca2+、PO3-4且具有一定的粘度的人工唾液,观察发现GIC释放氟量在PH为4时最大,其次是蒸馏水,再次是PH为7的人工唾液;但其固化体氟释放速度在PH为4的人工唾液中是同程度的,在PH为7的人工唾液中稍慢些[15]。说明溶出介质PH对GIC氟释放量的极大影响,低PH有利于其释放氟。真田一男等应用PH为6.18的缓冲制成的人工唾液与蒸馏水比较,发现该人工唾液中GIC释放氟量是蒸馏水的4-5倍。而Mallakh报道,在人工唾液中氟释放量低于蒸馏水。这可能是各研究所用材料差异,加之人工唾液成分,PH、离子强度等不同,使结果不尽相同。

  (五)GIC固化体的崩解与其释放氟的关系

  小出武等为明确水门汀崩解与其释放氟的相关性,研究固化体放置时间对水门汀的影响,使用2种普通化学固化GIC和1种光固化GIC固化体浸入蒸馏水中,测定氟及水门汀固化体中铝、硅等主要成分,同时应用电子探针分析浸水后GIC表层元素的变化,探讨GIC表层崩解与释放量的关系。浸水后普通化学固化释放氟量随着固化体放置时间延长氟释放量减低、铝、硅也有同样的倾向,说明氟释放伴随着GIC固化体的崩解。光固化GIC与普通化学固化GIC相比,释放各元素量受放置时间的影响并不显著,扫描电镜观察化学固化GIC固化体放置5、10min,GIC表面崩解明显,放置60min时表面崩解减弱,仅限于表层,光固化GIC表层几乎没有崩解。GIC添加氟化物后其固化体释放氟能力增强,但是崩解率加大[16],因此GIC固化体崩解率与其释放氟量有一定的联系。

本新闻共2页,当前在第1页  1  2  

相关阅读:

    上一篇文章:口腔治疗步入精细化的标志:口腔显微镜
    下一篇文章:超声洁治的危险
    0% (0)
    0% (10)
    发表评论
    用户评论
     以下是对 [含氟玻璃离子水门汀的研究进展] 的评论,总共:条评论
    关于我们广告业务联系我们版权说明网站地图
    Copyright 2005 - kqqy.com All Rights Reserved
    友情链接: 口腔医学网 | 牙周炎 | 口 腔挂图 | 牙齿矫正 |